Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 1707, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793165

RESUMO

Understanding how microorganisms adjust their metabolism to maintain their ability to cope with short-term environmental variations constitutes one of the major current challenges in microbial ecology. Here, the best physiologically characterized marine Synechococcus strain, WH7803, was exposed to modulated light/dark cycles or acclimated to continuous high-light (HL) or low-light (LL), then shifted to various stress conditions, including low (LT) or high temperature (HT), HL and ultraviolet (UV) radiations. Physiological responses were analyzed by measuring time courses of photosystem (PS) II quantum yield, PSII repair rate, pigment ratios and global changes in gene expression. Previously published membrane lipid composition were also used for correlation analyses. These data revealed that cells previously acclimated to HL are better prepared than LL-acclimated cells to sustain an additional light or UV stress, but not a LT stress. Indeed, LT seems to induce a synergic effect with the HL treatment, as previously observed with oxidative stress. While all tested shift conditions induced the downregulation of many photosynthetic genes, notably those encoding PSI, cytochrome b6/f and phycobilisomes, UV stress proved to be more deleterious for PSII than the other treatments, and full recovery of damaged PSII from UV stress seemed to involve the neo-synthesis of a fairly large number of PSII subunits and not just the reassembly of pre-existing subunits after D1 replacement. In contrast, genes involved in glycogen degradation and carotenoid biosynthesis pathways were more particularly upregulated in response to LT. Altogether, these experiments allowed us to identify responses common to all stresses and those more specific to a given stress, thus highlighting genes potentially involved in niche acclimation of a key member of marine ecosystems. Our data also revealed important specific features of the stress responses compared to model freshwater cyanobacteria.

2.
Materials (Basel) ; 13(8)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32326094

RESUMO

We report a facile approach to control the shape memory effects and thermomechanical characteristics of a lignin-based multiphase polymer. Solvent fractionation of a syringylpropane-rich technical organosolv lignin resulted in selective lignin structures having excellent thermal stability coupled with high stiffness and melt-flow resistance. The fractionated lignins were reacted with rubber in melt-phase to form partially networked elastomer enabling selective programmability of the material shape either at 70 °C, a temperature that is high enough for rubbery matrix materials, or at an extremely high temperature, 150 °C. Utilizing appropriate functionalities in fractionated lignins, tunable shape fixity with high strain and stress recovery, particularly high-stress tolerance were maintained. Detailed studies of lignin structures and chemistries were correlated to molecular rigidity, morphology, and stress relaxation, as well as shape memory effects of the materials. The fractionation of lignin enabled enrichment of specific lignin properties for efficient shape memory effects that broaden the materials' application window. Electron microscopy, melt-rheology, dynamic mechanical analysis and ultra-small angle neutron scattering were conducted to establish morphology of acrylonitrile butadiene rubber (NBR)-lignin elastomers from solvent fractionated lignins.

3.
Macromol Rapid Commun ; 40(13): e1900059, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31021483

RESUMO

An ionomeric, leathery thermoplastic with high mechanical strength is prepared by a new thermal processing method from a soft, melt-processable rubber. Compositions made by incorporation of equal-mass lignin, a renewable oligomeric feedstock, in an acrylonitrile-butadiene rubber often yield weak rubbers with large lignin domains (1-2 µm). The addition of zinc chloride (ZnCl2 ) in such a composition based on sinapyl alcohol-rich lignin during a solvent-free synthesis induces a strong interfacial crosslinking between lignin and rubber phases. This compositional modification results in finely interspersed lignin domains (<100 nm) that essentially reinforce the rubbery matrix with a 10-22 °C rise in the glassy-to-rubbery transition temperature. The ion-modified polymer blends also show improved materials properties, like a 100% increase in ultimate tensile strength and an order of magnitude rise in Young's modulus. Coarse-grained molecular dynamics (MD) simulations verify the morphology and dynamics of the ionomeric material. The computed result also confirms that the ionomers have glassy characteristics.


Assuntos
Lignina/química , Nanopartículas/química , Plásticos/química , Polímeros/química , Borracha/química , Acrilonitrila/química , Butadienos/química , Reagentes de Ligações Cruzadas/química , Resistência à Tração
4.
Data Brief ; 22: 392-399, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30596136

RESUMO

This data article presents the utilization of thermally dynamic covalent bonds of lignin linkages such as ß-O-4', Cα-O of ß-5' phenylcoumaran, and ß-ß resinol to modify the thermomechanical properties of high loading lignin-nitrile rubber composites. These thermally active lignin linkages can be triggered at 180 °C to generate free-radicals for crosslinking reactions. The evolution of crosslinking density was measured in-situ using dynamic mechanical analysis and rheological characterization. The shape programmability and shape recovery of these composites were determined by both ex-situ and in-situ methods. The thermally modified composites exhibited excellent shape memory properties. The data in this article are related to our recent research article entitled "Responsive lignin for shape memory applications" (Nguyen et al., 2018).

5.
RSC Adv ; 9(54): 31202-31211, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35527949

RESUMO

In this report we describe repurposing of recycled polyesters as a matrix for lignin-a biorefinery coproduct that is used as a solid fuel and needs to find higher value-to make sustainable high-performance thermoplastic materials. Brittle lignin oligomers, isolated from plant biomass, require a low-melting host polymer matrix to form a rigid and tough renewable material. We demonstrate controlled lignin dispersion and interfacial interactions in softened recycled polyethylene terephthalate (PET) using a simple solvent-free, melt-blending technique. To avoid lignin degradation and devolatilization during melt processing, it was thermally treated. Tall oil fatty acid was used to enable PET processability at low enough temperature to accommodate lignin without charring. Chemical analysis reveals reduction of aliphatic hydroxyl content from 2 mmol g-1 to 1.63 mmol g-1 and an increase of total phenolic hydroxyl moieties from 5.86 to 6.64 mmol g-1 and cleavage of ß-O-4 ether linkages due to thermal treatment. Structural transformation of lignin macromolecules during heat treatment was further confirmed by an increase in molar mass and improved thermal stability. Interfacial interactions between lignin and PET were assessed from mechanical properties and thermal analyses. Thermal treatment not only helps to improve the stability of lignin but also slightly reduces the size of the dispersed lignin domains via favored interfacial interactions with the PET matrix. These methods improve mechanical properties of the material. Further, incorporation of lignin in the plasticized PET matrix increases the ductility in the blended products. The method we discuss here utilizes industrial wastes and co-products, and it does not require solvent or toxic chemicals during the reactive extrusion process that yields complete conversion to products.

6.
Sci Adv ; 4(12): eaat4967, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30555914

RESUMO

We report the manufacture of printable, sustainable polymer systems to address global challenges associated with high-volume utilization of lignin, an industrial waste from biomass feedstock. By analyzing a common three-dimensional printing process-fused-deposition modeling-and correlating the printing-process features to properties of materials such as acrylonitrile-butadiene-styrene (ABS) and nylon, we devised a first-of-its-kind, high-performance class of printable renewable composites containing 40 to 60 weight % (wt %) lignin. An ABS analog made by integrating lignin into nitrile-butadiene rubber needs the presence of a styrenic polymer to avoid filament buckling during printing. However, lignin-modified nylon composites containing 40 to 60 wt % sinapyl alcohol-rich, melt-stable lignin exhibit enhanced stiffness and tensile strength at room temperature, while-unexpectedly-demonstrating a reduced viscosity in the melt. Further, incorporation of 4 to 16 wt % discontinuous carbon fibers enhances mechanical stiffness and printing speed, as the thermal conductivity of the carbon fibers facilitates heat transfer and thinning of the melt. We found that the presence of lignin and carbon fibers retards nylon crystallization, leading to low-melting imperfect crystals that allow good printability at lower temperatures without lignin degradation.

7.
ChemSusChem ; 11(17): 2953-2959, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-29969535

RESUMO

Synthesis of multiphase materials from lignin, a biorefinery coproduct, offers limited success owing to the inherent difficulty in controlling dispersion of these renewable hyperbranched macromolecules in the product or its intermediates. Effective use of the chemically reactive functionalities in lignin, however, enables tuning morphologies of the materials. Here, we bind lignin oligomers with a rubbery macromolecule followed by thermal crosslinking to form a carbon precursor with phase contrasted morphology at submicron scale. The solvent-free mixing is conducted in a high-shear melt mixer. With this, the carbon precursor is further modified with potassium hydroxide for a single-step carbonization to yield activated carbon with tunable pore structure. A typical precursor with 90 % lignin yields porous carbon with 2120 m2 g-1 surface area and supercapacitor with 215 F g-1 capacitance. The results show a simple route towards manufacturing carbon-based energy-storage materials, eliminating the need for conventional template synthesis.

8.
ACS Appl Mater Interfaces ; 10(31): 26576-26585, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30003781

RESUMO

This work provides a proof of principle that a high volume, continuous throughput fiber coating process can be used to integrate semiconducting nanoparticles on carbon fiber surfaces to create multifunctional composites. By embedding silicon carbide nanoparticles in the fiber sizing, subsequent composite fabrication methods are used to create unidirectional fiber-reinforced composites with enhanced structural health monitoring (SHM) sensitivity and increased interlaminar strength. Additional investigations into the mechanical damping behavior of these functional composites reveal a significantly increased loss factor at the glass-transition temperature ranging from a 65 to 257% increase. Composites with both increased interlaminar strength and SHM sensitivity are produced from a variety of epoxy and silicon carbide nanoparticle concentrations. Overall, the best performing composite in terms of combined performance shows an increase of 47.5% in SHM sensitivity and 7.7% increase in interlaminar strength. This work demonstrates successful and efficient integration of nanoparticle synthesis into large-scale, structural applications.

9.
Data Brief ; 19: 936-950, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29904715

RESUMO

The article presents different mechanical, thermal and rheological data corresponding to the morphological formation within various renewable lignin-based composites containing acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene rubber (NBR41, 41 mol% nitrile content), and carbon fibers (CFs). The data of 3D-printing properties and morphology of 3D-printed layers of selected lignin-based composites are revealed. This data is related to our recent research article entitled "A general method to improve 3D-printability and inter-layer adhesion in lignin-based composites" (Nguyen et al., 2018 [1]).

10.
ACS Omega ; 3(9): 10709-10715, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459188

RESUMO

Polyethylene terephthalate (PET) waste often contains a large amount of thermally unstable contaminants and additives that negatively impacts processing. A reduced processing temperature is desired. In this work, we report using a renewably sourced tall oil fatty acid (TOFA) as a modifier for recycled PET. To that end, PET was compounded with TOFA at different concentrations and extruded at 240 °C. Phase transition behaviors characterized by thermal and dynamic mechanical analyses exhibit shifts in the melting and recrystallization temperatures of PET to lower temperatures and depression of glass transition temperature from 91 to 65 °C. Addition of TOFA also creates crystal-phase imperfection that slows recrystallization, an important processing parameter. Changes in the morphology of plasticized PET reduces and stabilizes the melt viscosity at 240 and 250 °C. Melt-spun, undrawn continuous filaments of diameter 36-46 µm made from these low-melting PET exhibit 29-38 MPa tensile strength, 2.7-2.8 GPa tensile modulus, and 20-36% elongation. These results suggest a potential path for reusing waste PET as high-performance polymeric fibers.

11.
ACS Macro Lett ; 7(11): 1328-1332, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35651238

RESUMO

Converting lignin into well-defined compounds is often challenged by structural complexation and inorganic contamination induced by the pulping process. In this report, instead of breaking down lignin into small molecules, we extracted a uniform and rigid oligomer from the lignin waste stream. The multifunctional polyphenol oligomer containing carboxylic acid, alcohol, and phenol groups is highly reactive and brings stiffness into the material matrix. Tough and self-healing elastomers are economically prepared from this oligomer by a reaction with epoxy-terminated polyethylene glycol, without needing any solvent. Specifically, the polyaromatic backbone's rigidity enhances the elastomer's toughness, and the multiple polar substituents form a network of hydrogen bonding that heals the elastomer. Many other applications, including adhesives, hydrogels, coating, and metal scavengers, are envisioned based on this oligomer's unique properties.

12.
Environ Microbiol ; 20(2): 612-631, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29124854

RESUMO

The marine cyanobacteria of the genus Synechococcus are important primary producers, displaying a wide latitudinal distribution that is underpinned by diversification into temperature ecotypes. The physiological basis underlying these ecotypes is poorly known. In many organisms, regulation of membrane fluidity is crucial for acclimating to variations in temperature. Here, we reveal the detailed composition of the membrane lipidome of the model strain Synechococcus sp. WH7803 and its response to temperature variation. Unlike freshwater strains, membranes are almost devoid of C18, mainly containing C14 and C16 chains with no more than two unsaturations. In response to cold, we observed a rarely observed process of acyl chain shortening that likely induces membrane thinning, along with specific desaturation activities. Both of these mechanisms likely regulate membrane fluidity, facilitating the maintenance of efficient photosynthetic activity. A comprehensive examination of 53 Synechococcus genomes revealed clade-specific gene sets regulating membrane lipids. In particular, the genes encoding desaturase enzymes, which is a key to the temperature stress response, appeared to be temperature ecotype-specific, with some of them originating from lateral transfers. Our study suggests that regulation of membrane fluidity has been among the important adaptation processes for the colonization of different thermal niches by marine Synechococcus.


Assuntos
Aclimatação , Lipídeos de Membrana/fisiologia , Synechococcus/fisiologia , Adaptação Fisiológica/genética , Temperatura Baixa , Ecótipo , Lipídeos de Membrana/análise , Fotossíntese , Água do Mar , Synechococcus/química , Synechococcus/genética , Temperatura
13.
ACS Macro Lett ; 5(5): 574-578, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27213117

RESUMO

As viable precursors to a diverse array of macromolecules, biomass-derived compounds must impart wide-ranging and precisely controllable properties to polymers. Herein, we report the synthesis and subsequent reversible addition-fragmentation chain-transfer polymerization of a new monomer, syringyl methacrylate (SM, 2,6-dimethoxyphenyl methacrylate), that can facilitate widespread property manipulations in macromolecules. Homopolymers and heteropolymers synthesized from SM and related monomers have broadly tunable and highly controllable glass transition temperatures ranging from 114 to 205 °C and zero-shear viscosities ranging from ∼0.2 kPa·s to ∼17,000 kPa·s at 220 °C, with consistent thermal stabilities. The tailorability of these properties is facilitated by the controlled polymerization kinetics of SM and the fact that one vs two o-methoxy groups negligibly affect monomer reactivity. Moreover, syringol, the precursor to SM, is an abundant component of depolymerized hardwood (e.g., oak) and graminaceous (e.g., switchgrass) lignins, making SM a potentially sustainable and low-cost candidate for tailoring macromolecular properties.

14.
ACS Macro Lett ; 5(10): 1152-1156, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-35658175

RESUMO

The synthesis of a novel high sulfur content material possessing improved thermomechanical properties is reported via the inverse vulcanization of elemental sulfur (S8) and 1,3,5-triisopropenylbenzene (TIB). A key feature of this system was the ability to afford highly cross-linked, thermosetting materials, where the use of TIB as a comonomer enabled facile control of the network structure and dramatically improved the glass transition temperature (relative to our earlier sulfur copolymers) of poly(sulfur-random-(1,3,5-triisopropenylbenzene)) (poly(S-r-TIB)) materials over a range from T = 68 to 130 °C. This approach allowed for the incorporation of a high content of sulfur-sulfur (S-S) units in the copolymer that enabled thermomechanical scission of these dynamic covalent bonds and thermal reprocessing of the material, which we confirmed via dynamic rheological characterization. Furthermore, the high sulfur content also imparted high refractive index (n > 1.75) and IR transparency to poly(S-r-TIB) copolymers, which offered a route to enhanced optical transmitting materials for IR thermal imaging applications with improved thermomechanical properties.

15.
Nanoscale ; 7(19): 8864-72, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25909461

RESUMO

Nanoscale interfaces can modify the phase transition behaviors of polymeric materials. Here, we report the double glass transition temperature (Tg) behavior of sulfonated polystyrene (sPS) by the inclusion of 14 nm amine-functionalized silica (NH2-SiO2) nanoparticles, which is different from the single Tg behaviors of neat sPS and silica (SiO2)-filled sPS. The inclusion of 20 wt% NH2-SiO2 nanoparticles results in an increase of Tg by 9.3 °C as well as revealing a second Tg reduced by 44.7 °C compared to the Tg of neat sPS. By contrast, when SiO2 nanoparticles with an identical concentration and size to NH2-SiO2 are dispersed, sPS composites possess a single Tg of 7.3 °C higher than that of the neat sPS. While a nanoscale dispersion is observed for SiO2 nanoparticles, as confirmed by microscopic and X-ray scattering analyses, NH2-SiO2 nanoparticles show the coexistence of micron-scale clustering along with a nanoscale dispersion of the individual nanoparticles. The micro-phase separation contributes to the free volume induced Tg reduction by the plasticization effect, whereas the Tg increase originates from the polymer segment mobility constrained by nanoconfinement and the rigid amorphous fractions deriving from strong polymer-particle interactions.

16.
ACS Macro Lett ; 4(9): 862-866, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35596448

RESUMO

We report on dynamic covalent polymers derived from elemental sulfur that can be used as thermally healable optical polymers for mid-IR thermal imaging applications. By accessing dynamic S-S bonds in these sulfur copolymers, surface scratches and defects of free-standing films of poly(sulfur-random-1,3-diisopropenylbenzene) (poly(S-r-DIB) can be thermally healed, which enables damaged lenses and windows from these materials to be reprocessed to recover their IR imaging performance. Correlation of the mechanical properties of these sulfur copolymers with different curing methods provided insights to reprocess damaged samples of these materials. Mid-IR thermal imaging experiments with windows before and after healing of surface defects demonstrated successful application of these materials to create a new class of "scratch and heal" optical polymers. The use of dynamic covalent polymers as healable materials for IR applications offers a unique advantage over the current state of the art (e.g., germanium or chalcogenide glasses) due to both the dynamic character and useful optical properties of S-S bonds.

17.
Int J Public Health ; 59(5): 833-40, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24858522

RESUMO

OBJECTIVES: Male sex workers (MSW) in Vietnam face high levels of stigma related to sex work, which may be associated with depression and increased vulnerability to HIV. METHODS: In 2010, 300 MSW completed a behavioral and psychosocial survey. Multivariable models assessed factors associated with sex work-related stigma and the association between stigma and depression. RESULTS: Factors associated with increased stigma included having disclosed sexual orientation to healthcare workers (b 1.75, 95 % CI 0.69-2.80), meeting clients in the street/park (b 1.42, 95 % CI 0.32-2.52), and having been forced to have sex without a condom (b 2.36, 95 % CI 1.27-3.45). Factors associated with decreased stigma included meeting clients via the telephone or internet (b -1.26, 95 % CI -2.39 to -0.12) and receiving financial support from family or friends (b -1.31, 95 % CI -2.46 to -0.17). Stigma was significantly associated with increased odds of depression (AOR 1.07, 95 % CI 1.01-1.15). CONCLUSIONS: Addressing stigma and depression in HIV prevention interventions is crucial for tailoring these programs to MSWs' needs, and may result in decreased HIV spread.


Assuntos
Depressão/epidemiologia , Homossexualidade Masculina/psicologia , Sexismo/psicologia , Comportamento Sexual/psicologia , Estigma Social , Adolescente , Adulto , Humanos , Masculino , Modelos Psicológicos , Análise Multivariada , Fatores de Risco , Assunção de Riscos , Apoio Social , Fatores Socioeconômicos , Vietnã , Adulto Jovem
18.
Adv Mater ; 26(19): 3014-8, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24659231

RESUMO

Polymers for IR imaging: The preparation of high refractive index polymers (n = 1.75 to 1.86) via the inverse vulcanization of elemental sulfur is reported. High quality imaging in the near (1.5 µm) and mid-IR (3-5 µm) regions using high refractive index polymeric lenses from these sulfur materials was demonstrated.


Assuntos
Polímeros/química , Enxofre/química , Humanos , Raios Infravermelhos , Refratometria
19.
ACS Macro Lett ; 3(12): 1258-1261, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-35610836

RESUMO

The synthesis of dynamic covalent polymers with controllable amounts of sulfur-sulfur (S-S) bonds in the polymer backbone via inverse vulcanization of elemental sulfur (S8) and 1,3-diisopropenylbenzene (DIB) is reported. An attractive feature of the inverse vulcanization process is the ability to control the number and dynamic nature of S-S bonds in poly(sulfur-random-(1,3-diisopropenylbenzene)) (poly(S-r-DIB) copolymers by simple variation of S8/DIB feed ratios in the copolymerization. S-S bonds in poly(S-r-DIB) copolymers of high sulfur content and sulfur rank were found to be more dynamic upon exposure to either heat, or mechanical stimuli. Interrogation of dynamic S-S bonds was conducted in the solid-state utilizing electron paramagnetic resonance spectroscopy and in situ rheological measurements. Time-dependent rheological property behavior demonstrated a compositional dependence of the healing behavior in the copolymers, with the highest sulfur (80 wt % sulfur) content affording the most rapid dynamic response and recovery of rheological properties.

20.
Nat Chem ; 5(6): 518-24, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23695634

RESUMO

An excess of elemental sulfur is generated annually from hydrodesulfurization in petroleum refining processes; however, it has a limited number of uses, of which one example is the production of sulfuric acid. Despite this excess, the development of synthetic and processing methods to convert elemental sulfur into useful chemical substances has not been investigated widely. Here we report a facile method (termed 'inverse vulcanization') to prepare chemically stable and processable polymeric materials through the direct copolymerization of elemental sulfur with vinylic monomers. This methodology enabled the modification of sulfur into processable copolymer forms with tunable thermomechanical properties, which leads to well-defined sulfur-rich micropatterned films created by imprint lithography. We also demonstrate that these copolymers exhibit comparable electrochemical properties to elemental sulfur and could serve as the active material in Li-S batteries, exhibiting high specific capacity (823 mA h g(-1) at 100 cycles) and enhanced capacity retention.


Assuntos
Polímeros/química , Enxofre/química , Alcenos/química , Fontes de Energia Elétrica , Eletroquímica , Eletrodos , Cinética , Lítio/química , Polimerização , Polímeros/síntese química , Reologia , Solubilidade , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...